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'ABSTRACT * STRESZCZENTE

This -is an essay where the author expresges his views on applied denctational
semantics. In the author’s opinion, whether -a software system has or does not
have a sufflcien*ly abgstract denatational semantics should be regarded as a.
pragmatic attribute of the system rather than merely as a mathemat:cal
attribute of ite deacription. In a software system with denotational eemantics
atructured programming is feagible and for such systems there is a routine
method of developing program-correctness logic. All that may not be the casge if
denotationality is not ensured. On the other hand, a non-denotational semantics
can be alwaye artificially made denotational ‘on the expense of lowering its
iaval of‘abstraciion. This leads to an imporﬁant pragmatic question: to what
extent and in which situatidns can we sacrifice denotationality and/or
abatraction of a semantics? All diecussions are carried on an algebraic ground
but the paper ie not wvery technical and contaings a short introduction into the

algebraic approach to denotational semanti-g.

Dlaczego Denotacyjna? Uwagi o Stogowanej Semantyce Denoktacyinej

Ninie jsza praca stanowi ésej. w ktorym autor przedstawia swoje poglgdy na
atoaoﬁanq éemantyke denotacyjng. To czy system oprogramowania ma lub nie ma
dostatecznie abstrakcyjnej'semantfki denotacy jne j powinno byé. zdaniem autora,
traktowane "jeko wiasciwos¢ samego systemu, a nie jedynie jake matematyczna
wtasnoéé jego opisu. W systemiec oprogramowarila majgcym semantvke denotacy jna
mozna programowac strukturalnie, a takze istnieje pewna standardowa metoda
budowania logiki dla dowodzenia poprawnogci programow. Oba te fakty mogs okazac
‘Bie nieprawdziwe Jjezeli egemantyka systemu nie jest denotacyjna. Z d}ugiej
jednak etrony, semantyke niedenotacyjng- .moéna zawsze sztucznie ucaynié
danotacyjnq kosztem obnizenia Jej poziomu abatrakcji Prowadz1 to do waznego
pragmatycznie problemu: do Jakiego stopnia i w jakich sytuacjaqh mozemy
poswigcic denotacyjnosci semantyki na korzysc innych wZasnodei? Dyskusja
przedstawionych proﬁleméw prowadzona jest na gruncie algebraicznym, praca nie
~ jest Jednak bardzec techniczna i zawiera krétkie-wprowadzenie W algebraiczny
model do semantyki denotacyjnelj.
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Evenyihing which 44 evddeni should be given
a special atfention ait ithe beginning in onrden
to avoid all possible misundenstandings in
the jutune- :

[a popular wisdom]

1. INTRODUCTION

This essay hae been addressed to readers interested in the applications of
denotational semantics in software engineering and is devoted to the discussion
of the attribute of denotationality. In .the author’s opinion, whether a
software system has or does not have a sufficiently abstract denotational
semantics should be regarded as a pragmatic attribute of the system rather then
merely as a mathematical attribute of its description. Denotationality in
system design is.like structurality in programming: it makes the final product
easy to understand and to _prove correct and therafﬁre constitutes a

prerequisite of a sound engineeriﬁs style.

Our main discussion is preceded by some clarification of concepts. In Sec.2 we
point out that the word nenanticé may - have ‘at least three different meanfnss
and we try - to convince thé reader that such attributes of a semantics as
denotational, operational and algebraic should be regarded as orthogonal
rather than as alternative or contrasted. In Sec.3 we define our notation and
in Sec.4 we briefly introduce the reader into an algebraic féamework of

denotational semantics. That fraﬁawork js tﬁen used throughout the paper.

The main part of our discussion starts in Sec.5 from an argument. that a
software system with denotational semantics provides an adeguate ground for
- structured programming -and for a systematic development of a program—

~correctness logic. Then we show that this need not £o be the case if

& sghort conference version of the paper was publiﬂhed.earlier ag [Blikle 8%a].
' The reported " research has been gponsored by the Polish Academy of Sciences
under grant CPBP 02.17. g
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denotationality is not ;néured (Sec.6). This ie followed by the analfsis of
such properties of a semantics tﬁat can make the semantics nop—denotatiénal. Ve
dipcuss the trade—off betwsen denotationality and abstraqhionl(Séc.?)'ahdrwe
show that a non-denotational semantics can .be aiways” aftific;ally-:'hade-
denotational™ on the expense of lowering. its 1evel-of abstraction '(Séc.ﬁ).-
This leads us to aﬁ important pragmatic question: to what extsnd_aqd in'ﬁhlch‘
gituations can we sacrifice denotationality and/or gbsErchion “of a ;emaﬁtics?
A few typical cases are discussed where the danotaéionalitylof a aemﬁnfiéé _can
be spoiled (Sec.9 and Sec.10). One of them is -a ;opy—rule?maphanism;'ﬂe
complete the discussion with an example of a structured operatiohél- deftﬁition:_'
(in the style of 6.Plotkin) of a denotational semantics of a simple programmtns

language (Sec. 11) The last Sec.i2 contains some concluding remarks.

2. ABOUT THE CONCEPT OF SEMANTICS

This section iz devoted to the clarificatxpn of the cohcept-of semantics and to
a discussion on the relationship between three common attributes of a
semantics: denotational, operational and algebraic. We 'shall argue that

these gttributes are orthogonal rather than alternative or contrasted.

Let us start from a remark that. the issue of samantic; ig not restricted - as
is frequently thought - to programming languages,  but applies to all kinde of
software including system software, tools and appiiéations. In fgct each
softwdre syétem containg some programming language which allows ths/ uger to
communicate hie requests to the system. Although in all examples which follow
in the paper Vwe analyze a toy programming language, this ‘choice has been
dictated only by the meritlof gimplicity. A toy programming language can be
made much simpler than .a toy operating system or a toy dgta—baae management

system. 3 +

In any software system we can always identify some syntax, which is used to
formulate our requests éo the system, some denotations, which are the meanings
of these requests and some eemantice, which assigns denotatione to syntax. In
other words, in the mathematical model of a software system we can always

_identify three following compohents:_




—~ a set of syntactic objectz Syn,
- a aet of denotationg Den,

— & function of semantics S:Syn+Den

Unfortunately in . the current literature the word semantfcs is used
ambiguously to mean four different things:

(1) the functions S,

(2) the definition of that function,
{3) the underlying theory.

(4) or even the-denotations'(e.g. “the gemantics of commands are

state~to-state transformations®)

* Case (4) is, of cour;e. only a 1linguistic sloppiness. Case (3) can easily be
recogniied fronfa context and therefore does not cause problems. Cases {1) and
{2), however, if not distinguished pr perly may lead to a coﬁfusion. For
instance, if an author saye that: "we call a semantics denofational 1§ it is
composdiionally defined and tachles hecursion with the hefp of {ixed puints®,
it is not elear if he is talking about‘ a function (which ;Q "compositionally
defined..."), aboqt itg definition (which 'Eacklea recursion...”) or, maybé,
about both at the same time? ‘ ;

In this paper by a semantics wé always'nean a function and when we want teo talk
about its definition, then we say that explicitly, unless the context indicates
clearly enough what we mean. Below we briefly explain our understanding of the

: att;ibutes denotational, operational and algebraic. - We s&tart  from the
attribute of denotationality.

Syn usually represents a context—free' language described either by a
context-free grammar, or by BNF equations, or by a set of syntactic domain
equations or by a signature of an algebra. In each of these casee one may
' construct a unique many-sorted algebra over Syn. wa we egay that 'S is
denotational if it has the property of compositionality, i{.e. if one can
" construct auch a mény—éorted algebr; over Den that 5 becomes a homomorphism. As
we eghall see in the séquel.(Sec;7) that understanding of denotationality is a
little too weak for applications. In fact, a denotational semantice should be
also pufficiently abstract in order to be of some use. That is, however, a

rather ‘pragmatic issue and cannot be easily formalized.
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In the 1literature the term demotatiomal semantics is usually associated with
two gpecific techniques of constructing the algebra of denotations: reflexive
domains and continuations (see e.g. [Stoy 77], [Gordon 79] or [Schmidt 86])«
These techniques have been introduced by the pioneers of denotational semantic
([Scott 71] and [S;ott,Strachey 711) in order to conatrgct a denotational mo&al
of an untyped lambdaucalculup mixed with unrestricted goto’s (Algol-60).
Reflexive domaine and continuations have so much- attracted ther-attahtign-,of
researchers that for many years it became customary to assume that every '
denotational semantics must involve these concepts; In fact3 however their.
authore have always emphasized that the most relevant attribute of a
denotational semantice is compositionality: e

In this eapproach the semantical funciions give mathematical values 2o -
expressions - values related To some given model. The values of expressions are
detenmined 4in 4uch a way that the vatue of a whole exprnession depends
gunctionally on the values of 4its paots -  the exact compnection being {ound
thnough the clauses of the syntoctical definition of the Language.

g : [Scott,Strachey 711

/

The ;déa of compositionality has been later formalized on an algebraic ground
by & group of American authors known as ADJ, see e.g. [Thachar,ﬂagner,ﬂright
78]. On the other hand it has been pointed out in [Blikle,Tarlecki B3] that
reflexive - domains are needed“ only if we wish to describe self-applicabls
functions, i.e. functions that can assume themselves as arguments. Such
functions aﬁpear e.g. in Algol’é60 - due to typelees procedural parameters - or
in Lisp - due to dynamic recursion. Since, houetgr.‘Balf-applicability has
turned out to be an unsafe programming mechanism, it has been abandoned in
modern software systems including the majority of contemperary-programming
languages. Thie ’has led to a conclugibn .that'the denctational models of
software may be conveniently constructed in a framework where the domains of
denoctations are usual sets. It has also been known from the applications of VDM
[Biérner,Jones 78] that jumps in programming'languages - even such anarchic
jumps as in Algol-60 - “can be described without continuatione (cf. alse
[Blikle,Tarlecki 831).

4
In the majerity of projects devoted to the development of software—

—specification systems - and .in particular in the project dedicated to
denotational semantics such as e.g. MetaSoft [Blikle 88b], RAISE
[Nielsen et al. B8] or BSI/VDM- [Larsen et al. B9} - - a set—theoretic

"continuation-free style has been assumed. Although the discussion which follows
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applies essentially to all styles of denota££0n31 semantics, it refers mainly
rto --and it has been largely stimulated by - the mentioned above ' recent
developments of that theory and its applicatxons.

" The #ttribute of denota*ionality may. be associated not only to a function of
semantice but also tec its definition. When we say that a programming language
Fascal has been given a denotational - semantics we mean that the semantics of
Pascal has been given a denctational definition, i.e. a definition which
expreases the compositionality of S explicitly by tée equations of the form:

S{op(syn,,....synn)] = {OP](S[syn,j.....S[synn]) .(2.{)

where op. is an oparation in the algebra Syn and [op] s the corresponding
- -operation in Den. Usually tha operations op and [op] are not explicit in these
equations but implicit in the (meta)expressions which appear on ‘both sides of

(2.1). For instance, we write:
S[com,:comzl(sta) = S[ccmzl((S[coniltsga))
where com stands for a command and sta for a state.

_Of course, a non—denotational semantics lcannot be given a denotational
definition, although & converse Bituatién is possible (Sec.11). If, therefore,
we are designing a new software system - rather thaﬁ formalizing an existing
one - and . if we choose e denctational form-of its definition, then we may be
sure that the semantics of the system will become denotational, and therefore
that the system. will enjoy some important properties. If we choose &
non—denotgtional style of the definition, then we still may be able to
construct a denotational semantice, but in that case we have to prove that our
semantice has indeed this proﬁerty. Of course, in such a case there is always a
certain risk that our eemantics wmay "come out of control™ and become

non—compogitional.

"How let us discuss thé concept of an operational gemantice. In contrast to

'dsnﬁtationality. the attribute of operationality is not very sharp and applies
in the first place to the definition of § rather than to § itself. Horeover,
that attribute has never been formalized. We can only point to some techniques
and/or-metglanguages.uhich are regarded as related to an 6perational style. For
instance the Vienna Definitional Languag- (VDL) [Lucas,Walk 691, the
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structured operational semantics {S05) [Plotkin B1] or the mnatural
semantice [Kahn,B?]'belnng to that group. ;

In the opinion of the author we can say that:a;function of semantice has an
operational definition if that definition deecribes sgome algorithm of
"executing” the underlying syntax. A code of an interpreter is an example of a-

vefy operational definition. Another such example, much more abstract in fact,
may be a definition written in Plotkin’s S0S. Also definitions wriften in VDM
[Bjorner,Jones 82] are to a large extend operationa} in that sense (although
" they are denotational at the same timel), since they usually describe  an
abgtract interpreter of a syntax in question. In contrast to the attribute of
denotationality, where we can always fprmally decide whether a given definition
is or is not denotational, when we talk about operationality we can only argue

about the degrde to which our definition iz operational in a givanzcontext.

In this paper we do not discuss much of the idea of operational semantics. We
only wish to express an opinion that operatiomal should not be contrasted to
denotational. The author believes that a definition of a software system must
always be operational to some degree, that desgree depending on several factors
such as e.g. the stage of the éystem development, the target programming
language where the system is to be implemented, the expected reader of the

definition, etc.

The attribute algebraic, similarly to operational, refers to the definition
of 5, rather than to 5 itself, and is not very sharp. Usually an algebraic
definition consists of a set of axioms which define a class of the algebras of
denctations Den. The corresponding syntax is common for all theéelglgabras and
is implicit in their common signature. For any Den the function of semantice ie
the unique homomorphiem from the algebra of ground terme over that signature
into Den. An algebraic (axiomatic) definition of a semantics always guarenteés
that the defined semanticg ie denotational.

The dichotomy ‘between algebraic and non—algebraic -~ or better between
axiomatic and non-axiomatic - although relevant for applications, is not
quite mathematical. From a mathematical viewpoint each definition is axiomatic,
eince each definition is an axiom which we add to some already existing axioms
of an underlying theory. For instance, a VDM-style definition is nothing but a
set of axioms added té the (implicit in the definition of VDH) axioms bf an:

appropriate aét—theﬁfy or domain-theory. in a VDM-style definition we can also




oy i

s e

_ldentify an algehra of syntax and an algebra of danotatinns. although they are

frequently not ‘explicit in the defin:tiun In an DBJ—style semantics [Goguen,
Meseguer, Plaisted B3], the algebra Den Iis defined explicitly - although in an

~axiomatic way - whereas S¥n and S are implicit

":In' the opinion of the author a semantics should be always -sufficiently

denotational and should be described at an appropriate level of operationality,
the latter ‘depending on the current application. At the game time the algebraic
framewnrk ‘Beeme most appropriate for the description of software uhether or not
we ~ are  using . axiomatic techniques - and indepandﬂntly of the - degree of
operationslity of the used gemantics. ;

3. BASIC NOTATION

Most definitions of semantice which we discuse in this paper are written in a
80 céllad mﬁde1~orientad style typical of the Danish dialect of VDM and of
MetaSoft. In that style the algebras of syntax and of denotations are
constructed within some set-theory, rather than described axiomatically as e. £.
0BJ [Goguen et al. 83] or ACT—DNE [Ebrig,HMahr 85]. Below we briefly introduce a
notation which is used in our definitinns. For more details we refer the reader
to [Blikle B7b].

For any sets A end B:

AlB denotes the union of A and B,

A+B  denotes the set of all totel functions from A into B,

A8 denotes the set of all partial functions from A into B,

Aﬁﬂ denotes the set of all mappings from A into B, i.e. partial functions
defined over a finite subset of A

Act denotes the get of, all finite strings (including the empty atrzng)

of the elemants of A

*

Domain equationa are written in the form e.g.1

sta : State = Identifier » Integer
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by which we mean that each sgtate is a total function from identifiers to
integers and that 2 typical element of the set State 1is dsnoted'hy s8ta possibly
with indices. By f:A+B and f:A%B we denote tha_fact that - f ie a total resp.
partial function.fron A to B. In our paper the formula a:A is used synonimously
with agA, It can be read &8 "a is of type A", which in. some sofiwarq
specification languages means more than to be an element fcf.Séc.9).‘ By dom.f -

we denote the domain of the function f. For  curried functions like ;
f:A+(B+(C+D)) we write f:A+B+C+D. We also write f.a for f(a) and f.a.b.c for
((f.a).b).c . For uniformity reasons each many-argument non-curried function
ig regarded as a one-argument function on tuples. Consequently we write
f‘(al""'an> for f(a,,....qn). Formally this  should have 1led us to

writing f.<a> rather than f.a, but we keep the latter notation as more natural
and simpler. We also assume - for & better readability of semantic clauses — -
that the syntactic argument of a function of semantics is always closed in
square brackets. E.g. we write C.[x:=x+1] rather than C.x=§x+1. If f:A3D and
g:B3C, then feg:A¥C where f»g = {(a,c) | (3b)(f.a=b & :.b=c)}. In the
definitions of functions we frequently use conditional expressions of the form
b+c,d which stand for:

if b then c else d.

This  construction may be nested in which case the expression

by*(ay,(by*...(b *a ,a_.,)...)) is written in a column:

B A
b o il

TRUE =+ &y g

Sometimes in conditional expressions  we are nesting “"local constant
declarations™ of the form let x=exp; in €XPy. The gcope of such a

declaration is the expression expy.

" For any partial function f:A3B, by f[b/a], where acA, beB, we denote a.function
f[b/al:A%8 such that:

f{b/aj.x = x=a » b, f.x <

By [b,/a,,.,..bn/an} we denote a total function -on [81""'an]
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which assigns bi to a; for i=1,...,n.

4, DE“UT&TIOHA; SEHMANTICS FROM AN ALGEBRAIC PERSPECTIVE

A8 we have already meﬁtionad in Sec.2, a denotational semantics may be
understood a8 & homomorphism betwsen two many;sortaé algebras. This section is
devoted to a short introduction of a mathematical theory of such semantics.
. Hore on an algebraic framework of denotational semantics may be found -in
- [Blikle 89b] and a general introduction to an axiomatic setting of algebraic
‘memantics is [Ehrigﬂ Hahr 851): '

By a Biﬁnaﬁura we mean a guadruple:

5ig = (Sn,Fn,sort,arity)
where Sn is a nonempty set of sort names, Fn ig a nonempty set of function
names and: :

sort : Fn + Sn

arity : Fn + Sa"

afg' functions which associate the sorts of the results and of the arguments
respectively to any function name. By an algebra over the signature Sig, or
shortly by a Sig-algebra, we mean a triple Alg = (Sig,car,fun) where car
and fun are functions interpreting sort nameg as nonempty sets and funciion
names as total functions on these sets respectively. More precisely, for any
sneSn, car.sn ig a set called the carrier of sort =esn, and for any fnefn with
sorﬁ.fn:su and arity.fn=(an!,...,snn), fun.fn is a total function between

corresponding carriers, i.e.
' fun.fn : car.en; x ... x car.sn, * car.sn

If arity.fn=<¢>, then fun.fn is a nullary function, i.e. it accepts only the
empty tuple "<>" ag an argument. The fact that f is a nullary function with
values 'in A is denoted by f:+A and the unique value of f is denoted by f.¢>.

Hullary functiong are also called constante
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In applications, and aléo in the examples, algebrag are treated a little léss
formally'and are defined as collsctione of carriers and operations between
them, In- that case it is understood that the signatures are implicit in the

notation used.

Two algebras with 'the same gsignature are called gzimfilar. Given two ain’tila_r_
algebrae Algi = (Slg.cari,funi) ftor di=1,2, we say that - Alg, is a
subalgebra of Alg, if for any eneSn, : i :

.

cary.sn C cars.sn

‘and for any fneFn, fun,.fn is the restriction of'ﬁmz.fn te the ca;rriers of
Alg;. By a homomorphiem from Al,gr s {a Bource algebra) into llgz (a
similar target algebra) we mean a many-sorted function H that agsigne  to any

sort sneSn a function:
H.sn : Cary.sn + carp.sn (4.1)
called the sn—component of H, such that for any fneFn with sort.fn=egn:

if arity.fn = {sny,...,8n > with n30, then for any tuple S 4.2)
of arguments <a;,...,a > ¢ car.sngx...xcar.sn, we have
H.Bn.(fun‘.fn.ia,.....an>) =

funz.fn.ﬂ{.sn,.ar....,R.snn.an>

By Heis AlsT *Algz we denote the fact that H ie a homomorphism from
Algy into Alg,. ¢

With every many-sorted function which satisfies (4.1) wWe may ‘aspociate a
Sn—sorted relation =T in 113] ‘

Zy.80 Qcar,.sn x cér,.un
called the kernel of H and defined as follows:
a; =p.en 52 ‘iff(def) H.sn.a, = H.sn.az; "3

Fermally the kernel 1s a function =y which to eévery sort eneSn; assigne a

binary relatiecn Sy-sn  in cary.sn. It is a. well known fact that each
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Zy.8n. is an eguivalence relation. The many—sorted relation =; 1s said

to be a congruence in Algy, if for amy fneFny with arity .fn = .
= (?nl,....ann> and sort;.fn=sn and for any a4,byecar;.en,,
1=1,..0n1 : :

if aj E(H.Sﬁi? by for i=1,...,n

then fun,.fn.(aj,..,,aﬂ> Ey.8n fun,.fn.(b,....,bn>

A cqngruénce relation is aleo said to have the extensionality property. 1In
the sequel we shall frequently refer to th following well-known fact:

: Fact 4.1 If H ie an arbitrary mgny—sorted‘ function which satisfies (4.1)
‘ then 2y is a conéryenca in Alg; iff ome can construct such an algebra
Algz over the many-sorted family of carriers {carz.sn | eneSn} that H
‘becomes a homomorphism from Als, inte Algz.

An element of an algebra.is said to be rsachahla.if it can be constructed
from the constants of the algebra by means of the opefatinna of the algebra. An
relement‘which is not reachable is called a junk. For instance, in an algebra
of integers (Iht.1,+> all positive integers are-reachable and all non;positive
are junks. A qubset of car.sn which consists of jall reachable elements is
called a reachable carrier of the soft 8n. All reachable carriers are closed
under the operations of the algebra and therefore, if, all of them are not
empty, then they conagtitute a subalgebra., We call it the reachable
subalgebra. It is the (unique) least subalgebra of a given algehrg. If all the
elements of an algebra are reachable, i.e. if the algebra has no Jjunk, then ﬁt
is called a réinhable algebra. The following well-known fact ig important for
the theory of denotational semantice:

Fact 4.2 If H : Algy + 4lg, 18 a homomorphism and Ai;l is
reachable, then: '
(1) the image of Alg; in Alg, is the reachable subalgebra of
Algy, :
(2) H is a unique homomorphism between Algy and Alsz.

If for a given algebra Alg there -is exactly one homemorphism into any -algebra
Awith the same signature, then we say that Alg is initial, or - precisely
speaking - that it.ie initial in the class of all algebras similar with Alg.
An algebra {g called unambiguoue if eac™ of its reachable elements may be

-
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constructed from the constants of thatralgebra in exactly one way.

Fact 4.3 An algebra is initial iff it ie reachahle—and_unanbiguous.

For instance, the algebra (Int+,1,+> of ‘pogitive integers is reachable but

not unambiguous, hence not | initial, since e.g. 4 may bu'.canstrucgeﬂ ag

((1+1D)+1)+1)  or as ((1+1)+(14+1)). 1If, huuq?ar; we replace "+" by';“+i'j

(successor), then the new algebra becomes initialf

On an algebraic ground a denotational model of a software sysbem'is repreaantéd_

by a triple <Syn,Den,S> where Syn is a reachable algeﬁraf of  syntax, Den

ig an algebra of denotatiocns and

5 : Syn + Den 2 . (4.3)

iz a unigque corresponding denotational semantiéé. ‘The algebra of syntax is -

always reachable -~ a junk eyntax makes no practical sense - but does not need
to be unembiguous. The admission of ambiguous syntax contrasts our approach
from some other algebraic approaches to denotational semantics. It allows us to
regard our slgebra of syntax as a close approximation of so called concrete
kyntnx.rather than merely as an abstract syntax. For a discussion of that
problem see [Blikle B%bl.

How, let us explain the introduced concepts in the context of a toy programming
language. That example constitutes also a starting .point for many - other

exaﬁples which we discuse in the paper. Let the syntax of our language bét,
definéd by the following CF—grammar written in the form of a fixed-point eet -of.

equations [Blikle 72]:

ide : Ide = {x,y,z) : (identifiers) (4.4)

exp @ Exp = {1} | Ide | {(} Exp {+} Exp ()} (expraesiogs)
com : Com,= Ide {:=} Exp | Com {:} Com : (conn;nds)

The carriers of the corresponding algebra Syn are the threse sets {formal ,

languages) defined above' and the oﬁeratinna. which are implicit in thie
grammar, are the following:

get~x : =+ Ide {and the same for y and z)
set—1 3 =+ Exp
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make—exp : Ide + Exp
plus & Exp x Eyp » Exp
asg- ! Ide x Exp + Com

follow : Com » €om -+ Com

-\

whers
Bet-x.<) =x : (4.5)
s8t=1.¢) = 1 =k
: hake+ex§.1§e = ide (make-exp transforme an identifier into.an expr.)
plus;(exﬁ,,axpz) = (exp7+exp2) '
-asg.{ide,exp> = ide:=exp

follow.(qonl,coq2> = comgjcom,

In order to.define the corresponding algebra of denotations we first define a

domain of. states:
gta ! State = Ide » Real
and then we defiﬁe‘fhrea carriers of Dlen:

ide : Ide = {x,v,z} .. (the denotatione of identifiers)

- eva : Evalupator = State + Real (the denotations of expressiong)

exa i Eiecutor = State » State : (the denotationz of commands)

Observe that the denotations of identifiers ' are the identifiers themselves. Now
we define the bperations of Den. Since Den iz to be a hémomorphic image of
Syn, for each operation . op from Syn we define an Dpa;étion [op] in Den,
such that when [op] is applied to the denotations of the arguments -of op, it
gives the denotation of the corresponding value of opi

[set—x] .1+ Ide (and the same for y and z)

[set-1] : + Evaluator Crifis

[make-exp] : Ide + Evaluator

[plus]  : Evaluator x Evaluator + Evaluator ? A
[asg] # Ide x Evaluator » Executor

[follow] : Executor x Executor + Executor

where
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 [eet-x].<> e x
fast-1].<> 1.0
[make-exp].ide.sta sta.ide

L}

, [plua].(eva,.ava2>.sta (evatmsta) [+1 (avaz.stg)
[asg].<ide,evad.sta = staf[(eva.sta)/ide]

[folluw].(exsr,exéz).sta = exez.(exe,.gta?

 In these equations 1.0 denotes the real number which corresponds to the nuneréi,

(name) "1™ and [4+] denotes the arithmetical operation of- additign; Thg.;
equations are written in an implicit lambda—notation. For instance, the third
equation can be read as follows: [make-exp] is a - function that given an

1dentifier'ide returns an evaluater [make-exp].ide which given a state sta

returns a real number stored under ide in sta.

As is easy to prove, the algebra Syn is _reéchnble and therefore a
homomorphism S:5m-+Den is unique if it ‘existe. The proof of the
existence 5( S is, howéver, not quite trivial (cf.  [Blikle 89b]) since the
grammar which underlies (4.4) is ambiguous and therefore so is Syn.

Our homomorphism 18 a many-sorted function and therefore it may be ragarded'ah
a_triple of functione <I,E,C> where!

I : Ide + Ide
E : Exp + Evaluator
c

: Com + Executor

The definitione of these functions are of the form (4.2) and therefore are
implicit in the correspondence between [op] and op. Hence we do not need to
write them explicitly. In a more traditi&nal approach, however, these functions
are usually defined explicitly whereas the definitions of [op]’s are implicit.

In such a case we write:

I.[ide] : = ide

E.[1].8ta ; =i 1.=0

E.[ide].Bta = sta.ide -

E.[(exp,+exp2)].sts = E.{exp,].sta [+]_E.[exp2];sta
C.[ide:=exp].sta = sta[ (E.[exp].sta)/ide] : 4

C.[com;;comy].sta C.lecomp].(C.[com;].sta)
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where the syntactic argume#ta of the function of semantics are traditionally
closed in square brackets (cf .Sec.3).

If we are developing a denotational mbdel of a software system in a traditional

order ~ 158, first Syn, then Den and finally S - then we have to prove that

S ie indeesd a homomcrphism. In real-life situations this need not be a simple
task. Besider, we can easily make a mistake and construct an S which is not
compositianal. In the sequel we shall see some typical sources of such
migtakes. If, therefore, we want to be sure " that 'the mathematical model of a
software system becomes denotational, we should start the development of that
mndel from the algebra Den. In that case we can always develop a custom-made
syntax Syn such that the existence of the corresponding unique homomorphism
(denotational gemantice) ig guaranteed by the way in which Syn has been

-developed [Blikle 89b].
£ Lt £

5. WHY DENOTATIONAL?

: The role of denotationality in software engineering is similar to the role of

structurélity in °  programming. Both improve the readability, the
comprehensibility and the maintainability of a final product and both allow for

" the decomposition of a large task into ‘2 number of independent auhtaska Also

in both cases the non-convinced may give thousands of “clever examples” where
the principle of denotationality, respectively structurality, has been violated
in the derivatian-of a "smart” program. It has been known for years, however,

that in large—scale applications an anarchic cleverness brings always more

.disasters than benefits.

Readability ig, of .course, a property of a definition of gemantics. The
advantages of writing such definitions in a denotational form are widely known

— even_ if not widely appreciated -~ and therefore we shall not discuss them

here. This section is devoted to a claim that the decigion whether the

(function of) semantics of a system ig.to be compogitional should be regarded
as a design decision since it ig relevant for gome properties of the future

system.

Claim 5.1 The denotationality of seme~tics allows etructured top—down




= o0

programming in the corresponding syntax.
Congider an arbitrary software system represented by'a denotational model
5 :.Syn = Den
where for the sake of simplicity we appume that the algebras Syn (of syntax) _
and Den (of depotations) are one-gorted. and that Syn and Den denote the

corresponding unique carriers. Each prusramming task in our system consists of
the constrpction of a syntaciic object syneSyn which for a given prespecified

denotation deneDen, satisfies the equation:

S.[syn] = den ’ .
Of course, if den im to be programmable at all, it must belong to the reachable
part of Den, since the image of Syn in Den is always reachable (Fact 4.2). This.
means that there must be denj,...,den in  Den, - BYNy,...,8yn, in Syn and
an operation op ¢ Syn x...x Syn -~ Syn such that: :

¢1) den = [op}.(deni;...,denn) and
(2) s.[=yng] = den; for i=1,...,n.

Thie means-in/turn that the taék of finding a program for den may be split into
the subtasks of‘finding programs for each of ‘den;. These subtasks may be
assigned to independently working group of programmers, and whan programming in
the groupe is completed, the denotationality of S ;uarant;aﬁ that

cﬁ.(aynt,...,synn>
realizes the slobal. task, i.e. that

S.[op.(syn?,....synn}] = [op).(denf,...,deﬁ;) £ den; ;
Of course, ‘the problem of splii:tin,g den i‘nto_the "right" deni's does not need
tc be easy eince in general there exist such splites where deni's are not

reachable. A  correct split, howsver, alwaye exists. As we shail see in an

example which comes in Sec.6, if S is not denatatiunalt then it may be

_1mpossible to split some programming tasks into independently programmabie

subtasks.
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Claim 5.2 For each software systems with denotational psemantics there is 4
systematic {although not algorithmic}) msthod of deriving a sgound and 2

relatively complate get of Program—cerrectness prooi-rules.

Below . we give a rough, balf-formal, jJustification of that claim. & full
discussion, which requires the introduction of many technical argumentg, would

2o outside the scope of the present paper.,

To say that & program iz correct is to say that its denotation posgess a
certain property. Hathematically the properties of denotationa are represented

by total functions on denctations called predicates:
pred : Pred = Den + Bool

where Bool = {true,false). of course, in general predicates may be
many-argument functions from several - posc:bly different - sorts intoc Bool. Ve
may have; therefore, more than one domain of predicates. When established all
chogen doma;ns of predicates are added to the algebra of denotations and then
ve define some conatructors on them. These constructors identify a clasg of
properties that we want to express by means of predicates, such ag e. g. partial
or total correctness of sequential programs, livenessz and deadlock freeness of
concurrent systems etc. As we shall see in an example this may also require the
introduction of seme auxiliary carries to the algebra. The new algebra of

denotations corresponds to & language in which besides writing programs we can
also express their properties. i

¥hen we are done with the extended algebra we proceed to establighing the proof

rules which in our case are lemmas of, roughly, the following form:

for any reachable pred and any reachable den,,...,denn: {5:1)
pred.{f{op]. (deni,....dann>) true
ifr

there exist predicates pred,,..}.pradn guch that,
(1) predi.deni = true, i=1,...,n
(2) l.(pred.predl,...,predn>
where ).(pre&,pred,....,pre&n) expresses a ceretain relationship between
all introduced predicates. We establish such a lemma for each operation
opiSynx...xSyn+Syn of ' the algebra of syntax (notice that.[op] denotes the

»
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counterpart of op in Den). Of course, if op:+Syn, then i=0 and “iff" is

Tollowed only by &.pred.

The lemmas constructed in that way can be used in etructured-inductive proofs
of progfamg' corregtneaa. Each of them facilitates the reduction of a global
correctness problem — for a compound object - into a number of locai
correctness problems - for ghe components of that cobject. Of courmse, we can
also develop a formalized proof system (a logic) in  which our lemmas become
inference rules. The “if" part of sach lemma suarantﬁas‘than the aoundness. of
such a rule and the "oniy if" — a relative completeness in the sense close to
that of [Cook 78].

In general, by a completeness of a logic we mean the fact that every true
statement which can be expressed in the langusge of that logic ‘can be proved.
In the case of a logic of programe we can only expect a relative completeness,
by which we mean that in every concrete situation the applicahil;ty of each of

our lemmas depends on the following three factors:

(1) that the required predi'b are reachable, i.e. expressible in our
lcgic, g >

(ii) that we are able to express condition (2) of (5.1) in our logie,

(iii) that we are able to ﬁrove that condition in our logic, i.e. that we
can prove it on the ground of the corresponding theory of data (such
as e.g.‘inteéﬂrs, reals, records, etc.)

Now, 1lst usddiﬂcuss an example. Congider the programming language defined in
Sec.4. We shﬁll consfruct a corregponding Hoare-like proof-system for the
partial correctness of commands. First we expand the algebra Den of our
language by two new carriers: Condition - which constitutes an auxiliary
carrier - and Predicate. The new algebra has five carriers:

(]

ide : Ide {x,¥,z}

eva : Evaluator = State + Real

exe : Executor = State + State

con ¢ Condition = State + Bool /

pred : Predicate = Executor » Bool

. Then we‘ define the constructors of conditions and predicates. As the.

constructors of conditions we choose e.g.:

-~
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[lese] : Evgluator‘x Evaluator + Condition

{IessJ.(avaT,evsz)uata = evaf;sta'< evazusza'

[and] : Condition x Condition + Condition

fand].<c0n1.con2>.sta = con.sta & cony.sta
etE;

Of-coufsa,r in both definitions "=" denotes the équélity_in Bool. For predicates
we define just one constructor, which corresponds to the property of partial
correctness of commands. Since the commands in our 1ansuége represent total

functions, this constructor is defined as follows:

[parcor]‘l Condition x Condition + Predicate

[parcorj.(con,.conz).exn =

(Vstaestate)[conf;sta:true ~> con,. axe.sta)=truel
Now we can formulate our lemmas. For a better readability we assume that:
" PRE cong @ exe POST cony -

stands * for '[parcor].(cnn1,con2>.exg = true. We formulate one legmma for each

of our two constructors of commands ~ "follow" and "asg"” — introduced in Sec.4:

for any cong, cong and iny exeq, exes: 2 : (5.2)
PRE con,: follow.(exe,.exnz> POST cony
iff

there exist conditions conyq and conygy such that,
(1) PRE cong: exe; POST congj
PRE congg: exe, POST cong -
(2) (vsta)(conlr.sta=true —» conqy.sta = true)

for any cony, con, and for.any ide, eva: i (5.3)
PRE con;: asg.{(ide,eva> POST cony
iff

(vstaasiate)(coni.staztrua‘—> coné.ata{(eva.sta)/idé}:trua)

Observe that the form of (5.3) is such as if the syntactic. operation asg were

nullary, which is, of course, not the case. In our example we have not
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introduced predicates for iﬂaniifiers and evaluators, and therefore we ﬁprnot
introduce any statement 'that corresponds to (1) of (5.1), and in the clause
corresponding to (2) of (5.1) we refer directly to ide and eva rather than to
the predicates on them. i
It should be also noticed that in (5.2) and (5.3} we have omitted an epriciti“l
assumption about the reachability of predicates. Thiz makes our lemmas & 11ftle o
stronger than in the general case (5.1). In ofdér to make them exact analogues
of (5.1) we should have assumed that our coni's a;e reachable, which in this
particular case is not necessary. On the other hand all the predicates that

appear in ouf lemmag are of the form:
[parcor].(conl.conZD
and hence they are not quite arbitrary. ; o

Our lemmas may be now uséd in the construction of program—correctness logic, in
that case & Hoare’s partial—cnrrectngss logic. Assume that the expanded syntax
of our programming language covers 'the following syntax of formulas and of

correctness statements:

for : For = Exp {less} Exp | For {and) For (formulas)
cet : Cst = {pre} For {:} Com {post]} For (correctness statemente)

!
0

This syntax has an obvious semantice and the proof rules corresponding to (5.2)

and (5.3) are the following:

pre f°rt ¢ comy post for,T
pre for,z ! com, post forz
forfj-implies forlz

pre for; : comy;com, post for,

for; implies for2[exp/ide]

pre for, : ide := exp post for2

0f course, forz[gxp/ide]' denotes a formula which resulte from for, after

substituting exp for all free occurrences of ide. Each “enumsrator" expresses a
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conjunction of metaformulas from which one may infer the "denominator”. Observe
that since in these rules we are talking sbout formulas rather than about
conditions we have now implicitly introduced the assﬂmﬁtion about the
reachability of the involved predicates. :

The readere inﬁerested in thewmathematical probleme related to the construction
of logice for the denotstional modsls of goftware may find more technical
material in [Blikle 87b] and [Blikle 88al.

6. UHY NOT HOE-DENOTATIOMAL?

In the fofﬁar Bection we have discussed some advantagee of denotational
semantice. Here we show that these advantz:-as: may disappear if a semantics is
nbt denotational. Consider as an example our little programming language of
Sec.4 which we now modify by ﬂetting

com : Com = ide.(:z} Exp | {(} Com {:} Com {1} and

C.[(con,;éonz)] = : b 7(6.[)
fai.coml*fai.conz -+ c.{com']-c.{COlZ],
TRUE 7 + nullsta
"whére
fai.cqn = first assignable identifier in com, i.e. the left~hand side

identifier in the first assignment of com,
‘nullsta = a function that transforms any state to [0.0/x,0.0/y,0.0/z]

Similarly to our notation for 1.0 vs. 1 (Sec.4) 0.0 stands for the real number

"zero®”, whereas "Q" denoteg the corresponding syntax (symbol).

In ﬁhe new version of the language the syntax has been modified by introducing
ﬁarentheaes into compound commands (for otherwise (6.1) would be ambiguous) and
'the semantics has been modified by making the effect of commande dependent on
fai’s. - The latter modification makes our semantic? not denotational since now

C.[(com,; comy)] depends on more than just C.[com;] and C.lcoms]. We
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prove that fact by showiﬁg that the egquivalence relation EC ‘18 not a

congruence (cf.Fect 4.1). Indeed:

C.[(x:=1;y:=2)]'= C.[(y:=2;x:=1)]  but : .
C.l((xi=t3y:=2);y=(x+y))] # C.[((y:= =x§=1)=y=(¥+y))]

Although our semantice is not denotational, ite definition is still in a

structural inductive form, hence it is easy to understand and 1mplengnh} th:

then should we bother about the non-denotationality? As we are golng to see,

gtructured programming and étructﬁred—lnductive proofs are not possible in the

new language.
Congider first the problem with structured programming and take as an example a

task of writing a program com that loads 2.0 to % and to jg i.e. a program
which satisfies the equation:

C.[com}.sta = sta[2.0/x,2.0/v] (6.2)

Now assume that we want to split this task iIn two new ones, described by two
following specificatione: :

C.[comj].sta = ata[!.O/x.I;Uly]
stal[ (E.[(xty)].eta)/x, E.[(xty)].sta)/y]

1]

C.[comz}.sta

If we asesign these subtasks to two programmers, then the first has (at least) a

choice of writing (we use a simplified intuitive notation for commands )} :

either (x:=1 ; y:=1) or (y:=1 ; x:=1)

-

and the other has (at least) a choice of writing:

either (yi=(xt+y) ; xi=y} or (x:=(x+y) ; yi=x)
As is easy to see unless our progragmmers communicate about the syntax of their
target programs, they cannot guarantee that (coq,;comz) will satisfy (6.2).

' Hence in our language top—down structured programming is not feasible.

Now congider the problem of structured-inductive procfs. First observe that in

the new language none of the two implications in (5.2) is true. Indeed,

e —
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although
PRE Erue 1 C.[(xi=I; x:=1)] POST x=0

ig certainly satisfied thera are no intermedjate assertions which can be uged-

in a proof of that fact hased on (5.2), since
PRE con : Ci[x:=7] POST x=0
is false for any con:Condition, Similarly, althougﬁ both

PRE true : C.[x:=1] POST x=1
PRE x=1 1 C.[x:=1] POST x=1

are true, the statement

PRE true : C.[(xi=1;x:=1)] POST x=1

'1s-not_true.

It f{a also not very eagy to modify the logic of Sec.5 ‘bto the néw language. The
major problem congists in the fact that’'in the present case we do not have -
and we cannot have - an algebra of denctations. We cannot apply, therefore, the
routine wa} for the construction of 1logic described in See.5. In fact, we
cannot use here any of the known techniques of formal logic, since all these

 techniques are Inherently based on the assumption that the underlying language

of terms and formulas has a denotat:anal semantics. In the usual formal logic —
whether classical, algorithmic, temporal or any other ~ we never talk about the
properties of (the syntax of) formu}ah. And here we should have to do that in
order to formulate & proof rule for ";". ‘

-In the opinion of the author the only rational way of solving the problem

consiste of “repa1ring a non—denotational semartics by making it denotational

" and then applying the nathod of Sec.5. We sghall discuss this methﬁd in Sec.B8.

Our example of a non-denotational programming language has been made a little
artificlial in order to be sufficiently simple. Similar examples may be shown,
however, on a more natural ground. Take, for instance, Pascal and its concept
of a type. As we can read in tJensen,Hirth 15]: "A data type detenmines a set

hY
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06 values which vanlables of that type may aséume...”. This sussests that
typéa in Pascal are Just the sets of values. If we assume thai. then the -type :
definitions of Fig.6.1 have the same denotation. A£ the same time, however;
according to the standard of Pascal the blocks of Fig.6.2 have different

denotations since the first block. generates a type error whereas the second

does not.
+ -TYPE DEFINITION ONE: : TYPE DEFIN;TION.TQO: _
e : A : Sy : 7
item = 'record item = record
no,size : integer; . no,size : 1ntegér;ii
end;. 5 end;
object. = record object = itéq;
no,size : integer; ;
end PASEIE e
v W6 :
"1TYPE DEFIHIfIDN ONE® “TYPE DEFINITION THO™
var var .
‘x @ item; : x : item;
¥ i object ¥ ¢ object
begin begin
X i=y S X =y
end : . end
Fig.6.2

48 the type-definition parts of -the bldcke of Fig.6.2 are semantically
equivalent and the remaining parts of the blocks are identical, the equivalence
relation which corresponde to our semantice iz not g2 congruence. This means

that the semantics of Pascal, in which types are regarded as sets of values, is
not denotational.

.Our exampie should not be understood as an argumeﬁt that Pascal cannot be given
‘'a denotational semantics. That example only indicates tﬁat in the contexg of
Pascal the interpretation of types as sets is too abstract to be denotational.
Next two sections are devoted to a general discussion of the relationship
between the denotutiorality and the abstraction of a semantics.
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7. DEWOTATIONALITY VERSUS ABSTRACTION

In the éoﬁtexf df our applicafions each semantics describes the effect of the
execution of agyntax. Of course, such an effect may be described in a more or
leas detailed way. For instance, the effect of th; execution of an imperative
ﬁrogram may be described by the set of gequences- of memory states generated by
all executions of that program, or - more abstfactly - by a corresponding
input-output function on states, or - aven more abstractly - by a function on
states truncated to the global variables of the program. The more abstract ig a
Bﬁnantics. tha lees inférmation ie carried by denotations. The class of all
semantice 6f a given syntax may be viewed ag a spectrum preordered bf a
reflexiva. and a transitive relatfon of abstraction. On one end of that
spectrum we have the least abstract semantics, which maps each syntactic object
identically into itself, and on the other end — the most abstract semantics,
which maps all syntactic object of the same sort into & common denotation.

Of course, both extremes of our spectrum are trivial. A good semantice shoulﬁ
provide all the relevant information about the effect of the execution of a
piece of syntax, but at the same time it should hide all the irrelevant details
of exacutidﬁs. Of course, what is relevant and what is not depends on the
current appl;cation. We should also be aware of the fact that if a semantice ig
to be denotational, then the abatraction levels of its components (é.g. of 1,
RS in thelexample of Sec.4) must be mutually balanced. For 1nat§nce, if the
denotations of expressions do not. carry enough information in order to compute
the denotation of commands in rwhiqh they appear, then the semantice is not
denotational.
s

'In Sec.é we have seen two examplee of non—denctational semantics. In the first
example the denctations of commands do not include an information about fai’s,
‘although that information is relevant for the behavior of compound commands. Tt
seems rather clear intuitively that since we have made the aforesaid behavior
dependent on fai’s, we should have put an 'appropriaté information on fai’s into
the denotations, i.e. we sghould have made our semantics' less abstract. In the
example: with Pascal, Ehe.set—theoretieal meaning ofvé type ie not sufficiently
informative since each compiler of Pascal discriminates . between two
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~ compound types with differ;nt names, unlese they have been explicitly declared
to be equal. The compilers of Pascal compare the dafinitiqnﬂ.-hf.2typea'rathef“f
than their set—theoretical interprqtatipps;fﬁue' need, therefore, more .

information about a type - more than juqi-'the;éé;réap9hain;;§é£'df S Sk o

order to predict the behavior of a program where 'that3.ti?af'has gbeenr dsed.}ff
Again, in order to make our semantics denoﬁatioﬁai' we have.td:make-ihfleﬁs'f

absetract.

This section is devoted to a formal discussion of a trade—of f 'béfwgeﬂh
denotationality’ and abstraction. Let us start from introducing a few basic
concepts. Consider two, not necessarily denotational, semantics of the same

syﬁtax:

S : Syn + Den
* *
S : Syn + Den

where Syn={Sig,car-s,fun-8> and Sis=<Sn,Fn,sort,érity>. We assume that if
S or S* are not denotational, then Dem and/or Den* are just families of

sets ‘rather than algebras. If for any BneSn and any Bynl,synzecar—s.an=

* %
S .sn.syng = 5 -8n.gyn, -> S.sn.syn; = S.Bn.syn, (7.1)
T S :

i.e. if ES* C ¢ in a'componentwise way, than we say that

x

s” is less abstract than S ; it

3 ® ¥ * :
Ve also say that § is adequate for S, since 5§  bears - in a certain
sense - at least as much information as §. Ubéhever we change a semantics by
enriching denotations, the new semanticse becomes less abstract (i.e. more

ihformative) than the former.

We =say that 5 and S’ are equally abstract if 55* = Eg. 0f course,
equally  abstract semantice need not be equal. However, if .§ and S* are
equally abstract and one of them is denotational, then 'sc must be the other
one. In othér words: we cannot adaquately'repair non-denotationality without a
loss of abstraction. '

Proposition 7.1 For any S there exists a maximally abstract s" which is
both denotational snd adeguate for §. : :
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Proof. Let =" -be the transitive closure of the union of all congruences
included in ES. This relation is the largest congruence included in =g
The corresponding homomorphism Sf:Syn+Den/E* is the maximally
abstract denotational semantics which is \adequate for S. {1

of coufse, thé semantics S. constructed in the proof obove ig not the unique
'ﬂenantics”that satisfies Proposition 7.1. There are many such gsemantics, but
all of them are equally abstract with S*.

When wa construct a seﬁantics we should care not only about its global level of
abstraction, but- also about a balance between the abstraction levels of the
semantice aseigned to different sorts of Syn. If gyntactic objects of sort
eny are used in the construction of syntactic objects of ‘sort BNy, then on
one hand the denotations. of sort en; should be sufficiently informative in
order to enable the calculation of the denotations of sort sn;, but on the
other hand they sghould. not carry more information than necessary, i.e. they
should be as abstract ae possible./In order to express that claim in a more
formal way we introduce a few technical concepts.

Let 'Syn be a 'aany—sorhad algebra of syntax. By a context of arity (an|>
and sort 8n, we mean a function of the type

ct : car-s.sng + car-s.sny

/

which represents a “term with a hole” like e.g. (cf.Sec.d):

\_(Acoﬁ)(comﬁx==l) : Com + Com
{xexp)(y:izexpixi=1) : Exp + Com
(Aide)(y:=ide+x;z:i=1) : Ide +» Com
{(Aide)(idetx) i Ide » Exp

For a more formal definition of that concépt. based on the notion of derived

operators, see e.g. [Stoughton 88]. Now, let
S : Syn + Dm

be an arbitrary. - not necessarily denotational - semantics. Two syntactic

objects 8ymy and BYNy of the =ame sort 8Ny are gaid to be

context—equivalent w.r.t. a sort 8ng, in symbols
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8Yn, CE.(snf.sn2>-gyn2,

if one of them nﬁy be replaced by the other in any context of sort 8hy
£ =
without changing the meaning of tpa whole phrase, i.e. if for any context

ct:car~5.sn|*car—3.sn2.

] 5'3“2"°F-’Y“1) = S.snz.(ct.synz)

Given two sorts en; and sn; we say that the semashtics S.8ny of
car-s.sny is sufficiently abstract w.r.t. the gemantics S.8ny of
car—s;snz.' if any two syntactic objects of the sgort eny which are
context-equivalent w.r.t. en,, have the same mesning, i.e. if for any
aﬁni,synzscar—s.sni: ' :

syn; CE.<sn;,sny> syn, -> S.sn;.syn; = S.8n;.8¥Ny ; (7.2)

For instance, we say that the semantice of expreesions of a programming
language is sufficiently abstract w.r.t. the semantice of commands, if any two

_expressinna which are context-equivalent in commands have the same denotation.

If in (7.2) the opposite implication holds, then we =ay that S.Bn, is
aufficiantiy informative w.r.t. S.8ny.

Propnnitién 7.2 A semantics ‘S is denotational iff any two of its componente
S.sni, 5'5“5 are sufficiently informative w.r.t. each other.

The proof of that proposition is quite routine, but mince it requires the
formalization of the concept of a context we omit it.

In many software saystems there existe a sort - ugually called "programs" -
such that the synfactic objects of that sort may be executed without any
context, whereas the objects of all other sorts ~ e&.g. expressions,

declarations, commande — can be executed ohly in the context of programs. The

user of such a system is, of course, mainly interested in the behavior of
programg and he wants to see these behaviore an “abstraction level adeqguate for
the intended applications. For instance, in a general~purpoae. programming
language an adequate abstraction level for programs may be represented by I1/0
functions, whersas in a programing language for controlling robote - by sete of

sequences of states. The designer of the system should, therefore, chooge an
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5 abstract, then the other semantics may be almo little abstract.

- Proposition 7.3 For any semantice E:Syn+nen there

g

adequate abstraction level

for programs in the first pPlace, and then he should
"tune”

to it the abstraction level of all other sorts in such a way that the
whoie.seﬁantics becomes denotational and maximally abstract.

If in a semantics 5 all ite components S.sni, including the
programs, are sufficiently abstract w.r.t. the
R.Milner calls § fully abstract [Hilnar.?T].

component for
semantics of Programs, then
for instance, the semantics of
our toy programming language of Sec.4 is fully abstract,
- commands play the role of Programs, ;
wfth blocks, where

if we assume that
but a semantics of a pProgramming language
the denotations of blocks inelude an information about local
variables, is in general not fully abstract. In the
conatruct two blocks which héve -

latter case we can

different denotations although they are
interchangeable in any program.

The term "full abstraction® has not been chosen very adequately with respect to

what the word "full” means in colloquial English. When we say "fully abstract”

‘we could have expected that the semantics in question ig "as abstract as it can

be". In fact, however, it ig only sufficiently abstract with respect to the

semantice of programs. It therefore, the semantics of programs is little

For instance, a
trivial gemanticg which. maps syntax identically into itself is fully abstract.

Since it i3 also denctational and adequate with respect to any other semantics

we can formulate the following trivial proposition about
the reparation of non—denctational semantics:

of the same syntax,

exiets a semantics
5" :1Syn+Den” such thats

1) S* is denqtatinnal. ¢
€2) st is adequate w;r.t. B
3) s is fully abetract.

0f course, (3) above makes only sense if the common signature of Sym and

‘Den contains a sort of programs. For the sake of further investigations (in

Sec.8) we slightly generalize the concept introduced by R.Milner and say that a
given semantice S ig fully abstract w.r.t.

a given sgort sn if all S.8ny’s
are sufficiently -abstract w.r.t. $.sn.

Ve alsc azssume that the concept of full
abstraction igs applicable to any semantics rather than only to denctational
semantice, as it was the case with Hilner’s definition.

f
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8. REPAIRTNG SEMANTICS
In this section we discuss the problems of repairing npn—danotatlon;l or not
fully abetract semantics.-We start from non—denotationality,

As Proposition 7.3 indicates, the repairability problem for noh—dgndtationhl

semantics should be formulated with a a certain care, since otherwise it may

bécome trivial. Even if we request that besides satisfying (1)-(3) of that

propogition thé new semantics preserves all the information that was carried by‘

S, we can gtill find a trivial solutioh, namely

0

st : Syn » Denx Syn

* is as little abstract as 5,

i.e.rEs+ = Es*. The lat;ar is denotational on the expeﬁse that it says

where ST,gyn=¢S.eyn,syn>. The _semantics §

nothing>ahout the behavior of programs. The former says avarytping that 5 does,
but it  adds the whole sgyntax to that information. If we want to use §% in
order to tell a programmer what hie program is supposed to do, we have to give

to him that program explicitly. The semantic st is thereforz as ugeless as
* I
S

Althougﬁ of no wvalue for  applications, st indicates a certain way of
searching for the most abstract denotational semantics which is adequate for §
(cf.Propogition 7.1). In facp, we can always try to fapair S by a semantics S,
where 5".gyn=<S5.sy¥n,A.syn> and where A.syn provides the addi?!onal information
which is necpasafy to make 5 denotational., In the worst case A.syn=syi, but
frequently we can do much bstter. :
Consider as an example the non-denctational language described in Sec:6, and
let — a2 little informally - 5=<I,E,C>. In this sémantics C is not sufficiently

informative - w.r.t. itself gince the denotations of commands lack the

information about the first aesignable identifier and therefore the denotation

of a ccmpound command cannot be "computed”™ frbn the denotations of its
subcommands. In order to repair 5 we have to add the missing information to the

denotations of commands. This leads toc a semantics S°=<¢I,E.C"», where I and E
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are the sama-aslin S and where:
c™ COF + E;acgtor x Ide
C’ufide==exp]_=

<(Asta)sta[E.[exp].sta/ide], ide>
C‘.[(con,acomz)] = :

(8.1)

(8.2)
let_(axei,idei> = C‘.[comi] in for {=1,2

1de|#ide2,* (aer!exaz.ide1>
* TRUE *+ <(Asta)nullsta,ide;>

The semantics 5* {s, of course, both adequate for the
dsnotational.

former one and
We can aleo show that it is a maximally abstract such semantics.
Indeed, assume that S'—(I‘ EfC7 Y i denotational,
than 5" and

inherently more abstract
adequate for 5. By these assumptions I’ and E’ must be equally

abstract with I and E respectively. Therefore C’ must be inherently more

abstract than C*, i.e. there must be two commands com; and comy such that:

(1) C‘;{cﬁnil * C‘.[conz] and
{2) C'.[conii = C'.[conzj

From the adequacy of C’ for C and by
(2} We may conclude' that (. [coni}—c [conzl, i.e. exe j=exe,.
by (1), ider¢idez. In that case:

Let C'.[doni]=<axni.idei for i=1,2.
Therefore,
C.E(cnn';idezzzl)] $ C.[(ce-2:1d52==!}]
and hence, again by the adequacy of C* for C,
C’.[(comi;ide2==f)] E C'.[(eomzside2:=1)]

£

which in the virtue of (i) contradicts the denotationality of §°.

‘It ie also not difficult to show that our semantics §~ is fully abstract w.r.t.

commands. One should only prove that any two 1dantifiers, any two expressions

" and any two commands which have different denotations can be discriminated by a

certain. command-context. An easy proof is left to the reader.

It should be stressed that although in our exampie the most abatract
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denotational semantice that adequately repaira- S turned out _ta“,be fully

abgtract, it doez ‘not need to be so in general._ln-fueh,-s“ islfplly abstract
becéuse the original semantics 5. was so. Assume.“ howaver, thét we repair d S
semantics which is aimilar to that of Sec.é,. put where the denotations of
expresaions include algo their syntax In' that semantics E ie not sufficiently?]{
abetract w.r.t. C and that property will - be ﬁreservad in ths correspandihg mostrffq
abstract S°, since on the way from § to 5" we:are’ always lowerin; the level off”T'

abstraction.

The denotationa;ity and the full ahstraction af a . semantice may. be buth7i;a

repaired (or spoiled) either by lowering nr by raieing tha ahstraction level.

It is go since both these properties require a certain - balance between the‘-

abstraction. levels of the components of a samaﬁtics. Let us 111ustrdte this
statement by an example where we compare four different semantice.

Assume first that we extend the syntax of the language defined in Sec.4 by a
new sori called programs:

prog : Program = {begin} Com {end}
For the extended syntax we rleffne four different semantice:

(t) Semantics 5 denotational and Eully abstract, which resul;a from the
(natural) semantice defined in Sec. 4 by setting

P : Program + Executor

P.[begin com end] = C.{com]

(2) Semantics 5P ot - denotatfonal but fully abstract, which results

from the semantics of (1) by assuming that ™% has been spoiled as in (6. HE

by making the denotation of a compound command dependent on first assignable
identifiers. This sementics ig not denotational since Cnd ie not sufficiently
informative with respect to itself; (™ does not give enough information for

predicting the behavior of a command in the context of another command.

-(3) Semantice gnfa’ denotational but not fully abstract, which results‘
from the semantice of (1) by assuming that:

. ¢nfa : Com + Executor x Ide
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C“fa.[ide==exp] =
<{Asta)stal[(E.[exp].sta)/ide], ide>

C“fa.[(comlacomz)] =

let oxe;,ide;> = C™8 [com;] in for-i=1,2

'-(axajﬂexgz, idey>

PPf2 ; program + Executor
Pnfa [bﬁgin com end] = first. (Cﬂfa.[com])

Here 'the denotations of commands include the information about fai’s, but
unlike in (8.2) this information is irrelevant for the “executional effect” of

commands. The- samanﬁics snfa 55 not fully abstract- zince cPfa iz not

‘sufficiently  abstract with respect to pnfa, Indeed, c"f8 gives more

information then one needs to calculate the denotations of brnsrams.

(4) Semantics S°, denotational and fully abstract, which results from the

semantics defined at the beginning of this section (i.e. C* is def ined by (8. !)
 and (8.2)) by setting the semantics of programs as follows:

i P~ 2 Prugran'- Executor x Ide
P".[begin com end] = C".[com]
If by 51 —D 52 we denote the fact that S' is inherently 1less abstract
than 52- then our four semantics fit into the diagram of Fig.8.1, where .in
parenthesez we indicate the current do-ains of the denotations of commands and

of programs, reahectively.

(Exe, Exe)

caa
S

{ExexIde, ExexIde)

(Exe, Exe) {ExexIde, Exe)

Fig.8.1

Let us analyze this diagram more caréfully, since it pute some additional light

into the nature of denotationality and full abstraction.
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- In S"9 the denctationality of S ‘has been spoiled as & result of lowering the
abstraction of only one component of S, namely' €, by changing the behavior of

cpnmandé without changing their denotationa.-Tha?new behavior requires wmore

information than carried by the old denotations ‘and therefors €™ ig not
sufficiently informative w.r.t. itself. In turn, the denotationality of §° has
been spoiled as a consequence of raisins' the gbstraction"of €* = by changing

the denotations of commands from Exacutorilde to Executor - ulthoﬁt_ éhanginx"
their behavior. The new denotations carry less information than required by the

the old behavior.

In SPf® the full abstraction of S has been spoiled as a Tomult of lowering
the abstraction of C - by changing the denotations of commands from Executor to
ExecutorxIde - - without lowering the abstraction of P; cPfe s not
sufficiently abstract w.r.t. P“fa. In turn, the fuil ahsﬁraction of §" has
been spoiled by raising the abstraction of P° - as a result of changing thé
denotations of prdgrags — without raising the abstraction of C~.

Our analysie indicates two different strategies of repairing a semantics. One

consists in changing the "behavior" of esoftware, the other consists in changing |

. the denotations. The choice of strategy is a pragmatic issue. We change
denotations whenever we feel that the original semantics describes the intended
behavior of our software and that all we want to do ie to describe that
behavior in a compositipnal gnd/or fully abstract way. We change the behavior
of software if we decide that tﬁs assumed denotations adequately exﬁress the

effect 6f the execution of software.

In our' example the designer of the language should probably conclude that the

denotations of commands assumed in gnd are adequate for applications and that

the non—-denotationality of semantics is due to an awkwérd behavior of commands.

He should then correct his semantice by passing to S rather than to §°. The

case where the other strategy seems to be more appropriate ig that of Pascal
(Sec.6). In that case the designer should change the denotationz rather than
the behavior of software. Pascal types should not be regarded as sstsz since
: they have tc be compared during the execution of programs, and the cénpariaon
of sets may be computationally too expeﬁsive, if computable at all. Readers
interested in a denotatioﬁal model of Pascal types ﬁay refaer to [Blikle 87b]).

Of ~ course, a qgthod of repairing non-denotationality is only needed if at the

beginning we have unintentionally defined a non-denotational semantics. As was

|
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already pointed out in " Sec.4, when we design a software system from a scratch,
a safe systematic way of glving it a. denotational gemantics congists . in
starting the designing process from the algebra of denotations. In that case we 7
have no syntax -around and therefore “we have no :chanca of 'makins the
constructors of denotations dependent on syntax. Of course, it may happen that -
we will not Se able to express adequately some of our constructors on. the
ground of assumed denotations. For instance, we will not be able to define a

: pafﬁl;el composition of procegsses if we assume that the denotations of

Processes are I/0 Functions or even setg of computations. 1In such a case we
have " to modify appropriatély our model. s.g. by introducing new sorts (see
[Blikle 87a] fof " an example of a denotational semantics of a language with
concurrency). In any case, a design mistake like that described in Sec.6 cannot

"happen if we start the design of a software system from the algebra of

denotations.

To complete the discussion of the repairability of_samantica let us briefly
comment ﬁn the construction of 3 logic for the non-denotational language
defined in Sec.6. As we have mentioned there, the onli rational way of téck]ing
the problem of logic in such a case gseemed to consist in first repairing the
non—dénotationality of the semantics and then constructing the logic in the ;
ususl way;'as_described in Sec.5. For the sake of our discussion let us assume
that we repair the semantics S“d by changing it into 5%, since otherwise -

i.e. in the case of S - the logic has been described already in Sec.5. For
simplicity we omit programs in our investigations.

Let us start from defining explicitly two constructors 'of_cqpmanﬁ denotations
for which we intend to develop our proof rules:

[asg]l™ : Ide x Evaluator + Executor x Ide
[asg]”.<ide,eva> = {[asgl.<ide,eva>,ide>

[follon]‘.((exe,,idel},(sxez.idez}) =
ide,*idez -+ exe;axe,,
1dsl=idez + nullsta

In order to construct a Hoare-like logic of partial correctness for the new
semantics we have to modify the concept of partial correctness in such a way
that it captures also an infornatio@ about fai’s. Let: :

?
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[parcorfai] : conditioﬁ x Condition x Ide + Predicate
Eparcuifai].(cbn,.cnqz.ide>.<exa.idee> =
(VstacState)[con‘.staetrue -3 conz.(Exa.ata)=true] & ide=idea

and 1lst
PRE con; { exe POST cony, FAI ide

Btand for

~

[parcorfai}.(con',conz.ide).(exe.idee>=true,
Let allzero:Condition where:

allzerc.sta=true <(-> (¥ide)(sta.ide=0.0)
The modified rules ara-as follows:

for any con; and {exs;,ide;> for i=1,2 and for any ide: . (8.3)
PRE cong:
{follou]‘.<<ena,,idg,).(exaz,idez)
. POST cony FAT ide
iff ; :
there exist conyq, coﬁ,z and ide’ such that:
(1) PRE cony: exe; POST conqy FAI ide
PRE con;,: exe, POST con, FAI ide’
(2) [ide#ide” <> :
{(¥sta)(con;;.sta=true —> conyy.s8ta = true)] &
[ide=ide’ -» ;
; (¥sta)(cong.sta=true ~> zero.stastrue)]

for any'con,,'conz and for any ide, ide’ and eva: : (8.4)
PRE c6n1= {asgl”.<ide,eva> POST cony FAI ide’
e N . :
(vstststate)(cont.sta:true —> cong.sta[(eva.sta)/idel=true) &
ide=ide”

" For the sake of brevity we shall not transform  these rules into formalized

infarence rules &e in Sac.5. Let us only mention that although the rules
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developed here correspond in some sense to the language of Sec.6, they are not
formally applicabla to that language. The reason ig that

FRE con', ¢ exe POST con, FAI ide

describes a préperty of {exe,ide’ rather than . of exe, whereas exe, rather than
{exe,ide>, are the denotatione of commands in the language of Sec.6. We can
also see quite clearly now that neither for §°, hence also nor for S“d. there
exist predicates on exscutors that could be used in the proofs of their partial
correctneaa. This means that there is' no logic- of structured-inductive proofs
of the partial correctness of conmands for the language of Sec.6.

9. ON THE BORDERLINE OF DENOTATIONALTTY

No theory can capture all the reality. In some appliéationl a very orthodox
attitude to the principle of denotationality may lead to overcomplicated or to
nonﬁinplenentable models. In such cases a pragmatic solution may consist of
adding a non-denotational supplement to a denotational core of the model. As
long as the bulk of the system ig described in a compositional way, such a
style may be etill acceptable. Below we discuss two typical examples. A third,
rather singular, is discussed in Sec.10.

 Our first_exanple is related to types in programming languages. As we have
mentioned alréady in Sec.5 and Sec.6, types that we want to think abaut may be
sete with a non—computable equality relation. whereas types that we implement
are usually less abstract objects, ©€.%. some equivalence classes of expressions
with a computable equality relation. The former are called domain types and
the latter symbolic types. Each domain type may be. in general, represented
by many symbolic types, but each symbolic type represents exactly one domain
typeﬁ The reader is referred to [Blikle 87b] for an an example of the use of

* symbolic- versus domain tipas in the semantice of Pascal, and to [Bednarczyk et
‘al. 90] for a noré 3sner$l treatment of that problem.

There are two different strategies of constructing a mathematical aemantics of
a programmiﬁg langrage with types. One — which is probably most common today -
congiste of assuming that the domain types appear explicitly in the semantics,
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i.e. are asaigned-to ﬁarieblea, whereas the symbolic lypea ara- 1mp11£1t, In,
that cese, whenever we compere the types of two variahlea wa check if a certainli
equivalence relation between the definitione of theee typee is satisfied Thetfﬂ
strategy is most frequently associated uith the technique of partitionins ay
‘semantice into & static uenantics and @ dynanlc uuntics. which ig typical'

for VDM (see e.g. [Biorner,Jones 82]). The corre:ponding semantica_is then in;:
general not denotational {cf.Sec.6). : A . i

The: sapcond strategy ie dusl to the former -ehdicbnsists.qf”eséumiﬁg thatgif

symbolic types' are explicit in the Bemaatics.'fwhefaés 'doﬁain “typae aree:ef

implicit. In that case varicbles are typed by symbulic types ‘and whenever we;w

compare the types of two variables we compare the correepondins symbolic types;;-
rather than their definitions. This makes our senantich_denotationel. Ip*
addition to the definition of semantics we defihe'in‘tﬁat-casé & function '

D : SymbolicType *+ DomainType

which tells the user what the symbolic types stand for. Of course, our languaga
should have the following adequacy property:

"if in the execution of a program & variable v has been declared to be of a
type symtype, then everywhere in the scope of that declaration the.velue of v
helonés to D.eymtype”. i
In general SymbolicType ahd DomainType constitute. two algebras over the same
signature. That signature usﬁally containe several sorts which'cbrreqund to
different classes of types, such ag e.g. scalar types, record types, :fila
typee, etc., plus.a sort posesslpg the game carrier Bool in both algebras. The
latter gort iz needed in order to define an equivalence relation, a subtype
relation, etc. between types. Mow, if we ferget about the boolean sort; then D
ig usually a ‘homomorphism, hence it may be regarded as a denotational semantics
of symbolic types. However, in ths full algebra “of typese D is not a
homomorphism since two non—equal symbolic’ types may denote the same domain
type. The (partial) non-compositionality of D ies inherent to the diffeéence
between symbdlic- and domain types and therefore 1t>cannot be avoided.

The definition of D may be regarded as a non-denotational supplement of the
main definition of gemantics. This fact is not very harmful gince it neither

affecte the feagibility of structured programming in the language nof the
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construction of the corresponding logic.

Another typical situation where we may wish to al;ghtly relax the principle of
denotationality corresponds to the case’ ﬁhare we modify an existing syntax by
-introducing some notational conventions. For instancu, we may wish to allow for
the optionality of parentheses in expressions while introducing some priority
rules for operators. In that case the mathematical model of our system is
usually described by the following diagram:

.

SynE ——> Syn ——> Den
P D

where SynE denotes the extended syntax and P is g preprocessing function. In

general P is not a homomorphism in the strict sense of the word since SynE

. may have a different signature than Syn. However, P is usually a homomorphism

in a generalized sense, namely a homomorpism over a morphism of signatures. We
ghall not go here into any technical details, but explain our remark on a

simple example. Consider twe syntaxes of arithmetic expressions described by
the following equational grammars (cf.[Blikle 72]):

SynE Syn

ExpE = Cpn | Cpn+ExpE Exp = {x}

Cpn = Fac | Fac*Cpn . | (Exp+Exp) A
Fac = {x} | (ExpE) . L (Exp*Exp)

Each of these grammars defines unambiguously an algebra of eyntax (cf.

[Blikle 89b]. The former has three carriers: ExpE - extended expresesions, Cpn -

' components ' and Faec -— factors. The 1latter has only one carrier, Exp -

expresgions. Notice that SymE: imposes a priority of * over +. Now, the

preprocessing P is a many-sorted function that mapps all the three carriers of

"SynE into the unique carrier of Syn. Formally, it is represented by three

functions:
" E 1 ExpE + Exp
C: Cpn - Exp

F : Fac =+ Exp

defined by the following equations:
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E.[cpnl _ = C.[cpn]- : s
E.[cpn+expe] = (C.[cpnl+E.[expe])
C.[fac] = f.[fac]
C.[{fac*cpn] = (F.[fac]*c.{cpn])
F.[x] . =x :
F.[(expe)] = E.[expe]

Observe that although P=<(E,C,F> ig not a homomorph}sm in a strict sense, it
certainly has a compositional character and in fact ie not very far from a

usual homomorphims.

The moral of our two stories ig that if the major mechanisme of a system are i
described within a dsnotational model, the£ some "peripheral™ information may
be given in a not strictly compositional way. Of course, wﬁat.is pefipharal and
what is not is an informal question and therefore in all such cases "the
designer has to rely on his/her own professional experience and common sensa
understanding.- Little non-denctationalities are mnot too harmful, but it ig
clear that a too rich pre- or post-processing of the "main semantics™ may

completely destroy the éampo:itional effect of the latter.

10. COPY-RULE SEMANIICS

A capy;rule gemantice has been known for many years as a technique for
providing a mathematical semantics of a typeless ,lambda-calculus in which a
function may take itself as an argumént. In applications this allows 6ne te
formalize such prngramming ne#haniams as e.8. Algol-60 procedural parameters or
Lisp dynamie recurgion. The idea of copy ‘rule is rather simple (cf.[Landin
64]), and corresponds closely to the way .in which the -originalrinformal
semantics of Algol-60 wae described. A procedure declarition assigns the text
. af the procedure ‘body - rather than the corresponding s;ate—tranaition function
— to the procedure name in the environment. At the call time this text is

retrieved, and its denotation is applied to the current state.

Copy-rule semantice is not denotational. A dehothtional semantics of
lambda-calculus may be defined by using Scott’s model of reflexive domains

[Scétt 72] or one of ite later versions, e.g. information sgystems [Scott 82].
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&lthough mathem@ticallyrvery elegant, these models are not simple and therefore
= at least in the opinion of some authors - not very convenient . in
applications. Congequently, the majority of Boftware gpecification gystems,
such as e.g. BSI/VDM [Larsen at al. B9], MetaSoft [Blikle 87b] or RAISE
[Nielsen at al B7] are based on set—theoretic domains rﬁther than on Scott’s
models. In all such systems one cannot define a denotational semantics of
Algol-60 or of Lisp, but one can give them a copy-rule semantics.

Although the use of self-applicable functions in software systems is certainly

Enot_reeonﬁendablé, and the problem of giving a mathematical semantics to

Algol-60 or Lisp is today not very urgent, it may be of some interest to know
what ie the price of using a copy-rule semantics. As we shall try to argue
below, that price — measured by the loes of denotationality and abstraction -

dces not seem vefi high, especially if the only alternative are reflexive
domains,

' Let us analyze an example of a programming language with self-applicable
Procedures, i{.e. 4 language in which every procedure may take any other
procedure — even itself - ig an actual parameter. To simplify our example we
assume that every procedure has exactly one parameter which is always ‘a
procedure, and that all variables in a procedu;e body are global. The syntax of
our language is the following:

alvl .ol % identifiers

ide : Ide =

exp : Exp = Ide | {Exp+Exp) | ... - expresesions
dec : Dec = proc Ide(Ide)=Com | Dec;Dec declarations
com : Com = Ide:=Exp | call Ide(Ide) | Com;Com | ... commands
Pro : Pro = begin Dec:Com end | Pro;Pro programa'

States in our language afe triples consisting of an environment, used for
storing procedures, a store, for storing values and a message which is

either an OK message or an error message:

sta : State: énvironment x Store x Messgage

env : Environment = Ide = Procedure
sto : Store = Ide = Value
mes : Message = {OK,ERROR}

Prc ¢ Procedure = Ide x Com

val : Value

vel )

Integer | ...
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Observe that procadure§ are paire consisting of an identifier (formal
parameter) and a command (body). The functions of semanticg have the folldwing

gignatures:

: Ide + Ide
: Exp + Store =+ Value:
Dec + Environment + Environment

: Com + State ¥ Store

o a 9w H

#

: Pro + Store ¥ Store

Below we analyze only the interesting semantic clauses i.e. the clauses for
declarations, for calls and for single-block programe. All others have the

usual form.

D.[proc idepn(idefp)=con].env = env[(idefp,con)lidepn]
D.[dec;;decy].env = D.[deczl.(D.EdecI].env)
= . : .
A4 procedure declaration assigne the corresponding procedure, i.e. both the
formal parameter -énd the body,  to the procedure name in the current

environment. Semicolon is interpreted in the usual way.

C.[call ide (ide, )].<env,sto,mes> =
mes=ERROR - + <env,eto,ERROR>,
not idepnsdon.env + <env,sto,ERROR>
not ideapedon.env + <{env,sto,ERROR?
- let <idefp.con>=env.idepn in -
* let prc=e_nv.ideap in ; 3
TRUE o C.[com]:<env[prq/1defp],sto,uep)

After all necessary error checks a procedure call applies the denotation
C.[com] of the correspoﬁding procedure body to a state in which the current
environment has been modified by assigning the value of the actual parameter to
the formal parameter. We recall that all identifiers in the procedure body are

global and therefore there is no need to rename them.

P.[begin dec:com end].sto =
letrenv=D.[dec}.[] in
C.[com].<env,sto, OK>
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The execuﬁion of a program consists of three steps. First an environment is
created by applying the declqration part of the program to an empty
environment. Then a state is created by combining that environment with the

current store and the OK message. Finally, the denqtat{on of the command part

_qf the program is applied to that state.

Ae is not difficult to see, our semantics has the following two properties:

(1) E and C are not sufficiently informative w.r.t. D, since the denotation

of a qeclaratioq depends on the eyntax rather than on the denotations of its
componentes. %

(2).D is_nét sufficiently abstract w.r.t. P, because ‘the denotation of a
program depends o6n the denotation of a procedure body rather than on that
procedure body itself.

By 7(1), our semantice is not denotational, and, by..(Z), it is not fuliy
abstract. If we assume that the implicit part of the language follows the usual
style of e.s. Algol~60, theh (1) and (2) are the only violations of
danoéationality Qnd full abatréction; respectively. What does that mean for the
user of. the 1anguage?'  ‘

From a formal wviewpoint, our languaée doee not provide a fully adequate
framework for structured programming (cf.Sec.5). For instance, it is impossible
to define a programmer’s task of writing a declaration of a procedure <ide,com>
by giving only ide and C.[com] &ﬁd iE is-not worthwhile to do the game with a
program ﬁa;in'&eeecom end by giving D.[dec] and C.[com]; However a "local
structured programming” is possible. A brujaqt coordinator may split the task
of writing a compound command with a given denotation into the subtasks  of
writing subcommands {and/or aubexpressioﬁs) with appropriate denotations or to
split the task of writing a compound program into the tasks of writing a
sequence of subprograms. Moreover; he/she may spiit the task of writing a

Program | begin dec:com_end into a task of writing dec with -a given

~ denotation C.[comh] ‘of the procedure body and a "given denotation C.[com].

Both these tasks may be further structurally decomposed.

As regards the loéic for our language the related probleme and their solutions
are similar to the former. We can infer the properties of a compound command

from the properties of its component expressions and commands, and the
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properties of a compuun& program from the properties of its subprograms. We
cannot’ infer the properties of a ({denotation of a) declaration from the
propertieg of ite components, but we can. infer the properties of a p;ogram from -
the properties of the components of ite declaration. Readere interespeé in a
detailed discussion of Hoare-like logice for different copy-rule * schemes Arg

referred to a very elegant paper [Olderog Bij.

11. AN OPERATIDNAL DEFINITION OF A DENOTATIOHAL SEMARTICS

As it wae mentioned in the introduction, a denotational semantics may “have a -
non-denotational definition. In this section we briefly discuse a typical
example. of sBuch a definition, written in the style of ctrgcturea operatinnal'
semantics (S0S) introduced in [Plotkin 87].

Consider our little programming language and its semantics as defined in Sec.4.
We shall discuss a-S0S5—definition of the semantics of commands €. For that sake
we introduce a few auxiliary concepts. Let:

pcom : -Pseudocommand = Com | {nil}

conf : Configuration = Pseudocommand x State
Terminal-conf = {nil} | State

A configuration may be interpreted as a global memory state "of a von Neuman
machine, in which we store both, data and programs. By a tramsition relatiocn
between configurations we mean the least traneitive and reflexive relation

—> C Configuration x Configuration
with three following properties: -

<idei=exp,sta> —> <nil,sta[(E.[exp].sta}/ide]> (111D

(comi,sta> - (comf',sta')

. : (11.2)

<com;jcom,,stay —> <com1’;coﬁ2,sta’>
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{com;,sta> —> <nil,sta’)

(11.3)
<com;jcom,,sta> —> {comy,sta’>

- The iatter two formulas should be, of course, read as top—down implications.
The transitiaﬂ relation describes a way in whlch our machine transforms a
global state when executing‘ a program. If confi —=> confz holds, then we
gay that cquf reduces to confz. A Bequence of configurations:

: conf -f> confy —> ... —> conf,’

is called a computation. If confn is a terminal configuration, thénrthe
above sequence ieg called a terminating computation. Below we show a simple
- example of a terminating computation:

- psaudocommand state
<¥==l;y==2:z:=x+y. sta)

< yi=2jz:=x+y, sta[1.0/x]>.

T Z1ER4Y, sta[I.O)x.f.D/y])

<  nil, etal1.0/x,2.0/y,3.0/z)>

Properties (11.1) and (11.3) imply - by structural induction — that for each

non-terminal éonfiguration_ {com,sta> 'there is exactly one terminal

configuration <nil,sta’) such that:
<com,sta> —> <nil,sta’>

Thie provee the existence of a function of semantice:

€ 1 Com + State + State ]
C.[com]).sta = sta’ iff <com,sta> —> <nil,sta’>

Now, (17.1) and (11.3) imply (respectively) two following properties of C:

;C.[ide:=exp].sta = gta[(E.[exp].sta)/ide]
C.[com;jcomy].sta = C.[comy].(C.[com;].8ta)

‘This means that our function is a component of a hoﬁomorphisu (I,E,C) between
Syn and Den as defined in Sec.4.
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Some authors prefer the 508 style as more appealing to the intuition than
denotational equations. When defining a denotational semantics in the 508 style
one has to remember, however, about two proof obligations:

(1) that the corresponding function of semantics éxists and is total,
(2) that the function of semantics hae the compositionality property.

Of course, in practical situations both these proofs may be fab f{om trivial,f

‘12. FINAL REMARKS

In the Introduction we have formulated a clﬁim thaﬁ_the gemantice of a software
system should be  denotational, -unless we agree to gife up structured
programming and structured-inductién correctness~proofs. He hive discﬁssed some
arguments that denotationality does guarantee these possibilities, and aﬁ
examgle indicating that this may not be the case if denotationality is not
ingured. At the same time, however, we have shown that the pripcfplé;:of
denatationaiity may be always trivially ingured by adding -syntax to
denotatione. Doesn’t that mean ihat denotationallty ie merely a property of the
definiilon of a system rather than — as we have claimed earlier - a property of
thé gystem iteelf? ] 4 : ‘ i

Each software system ig a tool for constructing of some applications
(programe), and therefore an adequate mathematical model of a system should
provide a ground for a convenient description and wvalidation of these
applicatione. Whether a model is sufficiently aﬁequate - depends, genafally
speaking, on two factors: on the choice of '_denotations and on the
compositionality of semantics. Compositionality is important but ‘it ‘ig not &
‘goal in itse}f. It is worth of a care only if denotqtions adequately express-
the behavior of programs and of ite components. And once we fix denotatioms,.
the cbnpqaltionallty of semantice becomes a property of a system rather than 6f
ite definition. :

Qur requirement of denctationality should be understood as a pragmatic rule. By
chooeging éome 'clevsrf denotatione we may be able to construct an elegant

algebraic model for a mechaniem which is neither elegant nor algebraic. We have
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-seen_ 4 simple example of such a situation in' Sec.8. Some more interesting

examples are related to the well-known technique of continuations. Using that

techn;que. one may construct a denotational model of =2 very unstructured

,:pfogramming language with most anarchic goto’s. Formally, such a language

guarantees  the feasibility of structured programming but this is on the price
Qhat the denotations of programs are even more difficult to reéd, decompose and
analyze than unstructured flowcharts. By the use of continuations the principle

of denotationality is "cheated® in a very subtle way by putting all the

: euncabtugl mese of a languase deep into denotations.

One of the advantages of ﬁ formal mathematical semantics is the poesibility of
digcovering awkward mechanisms of a software system at the stage of itz design

rather than at the stage of its use. It haes been rather generally agreed that ar

- complicated definition of a mechanism should be regarded as a warning that the

use of such a. mechanism may; be not easy. However, the simplicity of a

definition - gspécially if this is a local simplicity, as e.g. in the case of a

continuation-style definition of soto’s - does not -guarantee a sufficient

'simplicity of applications. The latter may be adequately estimated by analyzing

the corresponding proof rule. Therefore the construction of a program—

correctness logic should be regarded as an inherent part of the proceés of

system design. Whenever we cheat on tha‘éubject of denotationality too much,

the price to be paid is the complexity of proof-rules.

é
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